
 1

The Terabyte Analysis Machine Project

The Distance Machine: Performance Report

James Annis, Gabriele Garzoglio, Chris Stoughton

Abstract: The Terabyte Analysis Machine is a research project in the fields of Knowledge and

Distributed Intelligence (KDI) and Large Distributed Archives in Astronomy and Particle Physics

(ALDAP). This report focuses on one of the studies in progress: the Distance Machine Framework.

Many analysis applications in Astronomy and Particle Physics need a transparent access to large

database-managed dataset. The Distance Machine Framework provides facilities to interface these

analysis engines to the Objectivity Database System, allowing the user to easily include application

specific indexing and partitioning algorithms. ANN is a useful example of the use of this

framework to implement an Approximate Nearest Neighbors engine. With its client server

architecture, ANN interfaces the Sloan Digital Sky Survey catalog database to different kind of

astronomical analysis programs. The performance of this system is thoroughly discussed.

Table of Content
Overview .. 1

Performance tests ... 2

Building and searching the tree ... 2

The re-clustering module ... 4

The client/server architecture. .. 4

Future developments .. 4

Overview
The goal of the Terabyte Analysis Machine

(TAM) project is to explore and integrate

emerging and stable technologies into an

efficient computing environment for

physicists and astronomers working data

intensive scientific analysis.

The Terabyte Analysis Machine is a Linux

cluster of currently 5 machines, connected to

a RAID disk via fibre channel. Using this

cluster, several studies are in progress in the

areas of Knowledge and Distributed

Intelligence (KDI) and Large Distributed

Archives in Astronomy and Particle Physics

(ALDAP). The studies include:

 using the Grid Data Management Pilot

(GDMP)1 to transfer the Sloan Digital Sky

Survey2 database (SX3) among

collaborating institutions;

 testing performance and reliability of the

Global File System4 for concurrent and hi

rate accesses to the shared RAID disk and,

in particular, its interaction with the

Objectivity Database System5;

 testing farms of IDE disks to provide direct

access to a several terabytes single node at

low cost, for non I/O bound applications.

 developing the Distance Machine

framework.

Particle physics and, increasingly,

astronomical analysis programs are data

intensive: accessing the data in a

homogeneous and efficient way is critical in

these applications. The Distance Machine

framework allows specific analysis programs

to transparently access large databases,

making best use of sophisticated specific

algorithms for indexing and partitioning the

database.

 2
At the current stage of development, the

Distance Machine is a library, implemented

in C++, which uses Objectivity as database

system. To guarantee the scientist flexibility

in the choice of data analysis language, a

Corba interface based client/server

architecture is provided to the user. The

transparent access to the large database

embodied dataset is granted by embedding

the objectivity reference to each data object

within a wrapper, a wrapper whose standard

array operators are overloaded. A vector of

wrappers can be effectively treated as a

vector of pointers to memory: this approach

not only allows almost immediate extension

of most existing standalone analysis

applications to large Objectivity managed

datasets, but also enables new applications to

use the re-indexing and re-partitioning

features of the framework to increase the

efficiency of the data access.

As a useful example of the use of the

framework, we have modified and extended

an existing library, ANN6 (Approximate

Nearest Neighbors), which provides methods

to find in memory the kth nearest neighbors to

a query point, in a defined parameter space.

Efficient nearest neighbor (NN) searching

algorithms are an area of active research in

the computer science community (there are

no exact solutions for dimensions greater than

10 that are faster than a brute force scan),

play a central role in SPH numerical

calculations of structure formation, and are

the core of a large of astronomical analysis,

clustering analysis, including searches for

clusters of galaxies and for resolved dwarf

galaxies. It is worth noting that the central

algorithm of ANN is the kd-tree, which is

also the base algorithm for the new fast N-

point correlation functions codes7: the

Distance Machine framework could be

straightforwardly extended to incorporate

these powerful codes.

 Using the Distance Machine framework,

ANN has the ability to efficiently provide set

of NN to any object of the Sloan Digital Sky

Survey database, which in 4 years is expected

to have a catalog of 500 Gigabytes.

As a note, The NN engine could provide a

test bed for the GriPhyN vision of virtual

dataset connected via a computing grid: the

Distance Machine would provide a

specialized service.

This report focuses on the performance of

this NN engine: ANN/Objectivity.

Performance tests
The Terabyte Analysis Machine is a cluster

of (currently) 5 dual Pentium III 650 MHz

computers, each with 1Gbyte of RAM,

70Gbytes of local IDE disk, and a fibre

channel connection to a terabyte-scale

hardware RAID box. This system has been

design to allow 1 Gigabyte/sec aggregate

throughput I/O rates for sequential data

scans8.

The Red Hat 7 boxes access the RAID disk

via the Global File System, which enables

each node to directly access the shared file

system without filesystem corruption. As

mentioned before, the Distance Machine

interfaces the data objects via Objectivity.

From our tests, objectivity cannot see disks

mounted via GFS as shared.

Building and searching the tree

ANN/Objectivity uses the Distance

Machine framework to implement a Nearest

Neighbor engine. First, it loads each

objectivity data reference into a vector of

wrappers whose role it is to overload the

standard array operators. For our database

configuration (1 container per database, max

test database size 200 Megabytes, default

ooinit() parameters, object size 250 bytes)

this takes 7 s/object. Then the user provided

definition of the parameter space (schema +

overloading rule for operator[]), is used to

build in memory a tree structure on the data.

At each node of the tree (hyper-cubes in the

parameter space) summary information like

node boundaries are maintained. Pointers to

the data wrappers are stored in the leaf nodes.

The maximum number of pointers in a leaf

node is called bucket size. The total memory

size of the tree structure depends inversely on

 3
this number. During the NN search, the tree is

descended to the leaf level; at this level the

NN algorithm is the standard O(N2). The

choice of the bucket size is, in fact, a trade off

between available memory and search speed.

In our case we have used a bucket size of 10

objects.

Fig 1 shows the memory usage after

building the tree: this should be considered

when configuring ANN to deal with database

larger than 10 million objects. Note that we

have set the Objectivity client page cache to 4

Mbytes.

Total memory usage after building the tree

-

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.E+00 2.E+06 4.E+06 6.E+06 8.E+06
Num Objs

R
A

M
 U

s
a
ge

 (
M

B
y
te

s)

Memory usage for a

bucket size = 10

Fig 1: Memory usage for various

database size after building the

tree.

The tree structure can be saved in a text

format for future retrieval: for our system, the

retrieval time is of the order of 10 s/object,

while building the tree is a CPU intensive

operation of the order of fraction of ms/object

(see Fig.2). The data agree with the expected

O(n log(n)) complexity of the algorithm with

a squared correlation coefficient (R2) of 0.98 .

The search for NN to a query point is made

extremely quick using the summary meta-

data maintained in the nodes of the tree. Fig.3

shows a comparison between the standard

O(n2) algorithm and the tree based algorithms

that ANN implements1. From the figure is

1 ANN can build two kinds of trees: kd and bd (box

decomposition) tree. The former divides the space

recursively splitting the sample along a single

dimension; the latter, in addition to this, divides the

space in concentric boxes: the bd-tree is optimal when

also clear that for our problem the different

possible tree-based algorithms are equivalent.

(These tests were run on an Origin 2000.)

Building and Searching the tree

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0.E+00 2.E+06 4.E+06 6.E+06 8.E+06
Num Objs

T
im

e
/O

b
j
(m

s
)

Building the tree

Searching the tree

std search | kd-tree | dim = 4 | bucket size =10

n lo g (n) c o mple xity

Fig 2: Time per object to build and

search a kd-tree for differet

database sizes.

Search time

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+02 1.E+03 1.E+04 1.E+05 1.E+06 1.E+07
Num Objs

T
im

e
/O

b
j
(m

s
)

kd std kd pri

bd std bd pri

bf std

Bucket size = 10

Fig 3: Comparison between the

search time of the standard O(n2) NN

algorithm (bf std) and the tree based

ones (bd, kd). Two different search

algorithms are used for the trees:

std and pri (priority queue).

highly clustered distributions of points occur. Two

different kind of search algorithms are then used on the

two trees: “std” is a recursive search of the tree; “pri”

searches the tree following a priority queue of the leaf-

nodes sorted by increasing distance from the query

point.

 4

The re-clustering module

The process of organizing the data in a tree

structure introduces a natural indexing on the

data. The data can be reorganized on disk

according to this indexing (re-clustering). On

our system, this process takes about 80

s/object. This technique aims to minimize

the amount of memory cache swaps needed

by objectivity during the search for the

nearest neighbors.

Fig. 4 compares the time per object required

to search 5 nearest neighbors for all the

objects, in the two cases of standard and re-

clustered database. For a small database

(500,000 objects) the time is approximately

the same: the data size in this case is small

(160MB) and few memory swaps are needed;

for bigger databases (above 2,500,000

objects) there is a gain of 15-20% in the

query execution. In general the gain can be

better, considering that in this case the initial

database was already partially clustered in

two (ra, dec) of the 4 dimensions used (spatial

organization).

Search time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.E+00 2.E+06 4.E+06 6.E+06 8.E+06
Num Objs

T
im

e
/O

b
j
(m

s
) T Non-reclustered DB

T Reclustered DB

T recl. / T non-recl.

T
 r

ec
l.
 /

T
 n

o
n-

re
c
l.

Fig 4: Comparison in the search

time per object for non-reclustered

and reclustered databases, for

different database sizes.

The client/server architecture.

ANN/Objectivity is currently implemented

as a C++ library. To allow flexibility in the

choice of the programming language in the

user analysis, a client/server architecture

implemented via Corba interfaces has been

provided. The server has been implemented

using Orbacus v4_0_5 and tested using a C

client implemented with Orbit (libIDL

v0_6_8). The search time per object for non-

reclustered databases increases to about 1.8

ms/object. Note that this time can be

optimized reducing the output log on both

client and server sides. This result has to be

compared with 1.4 ms/object of Fig 4: the

overhead is acceptable in many, and perhaps

most cases, where the increased flexibility

allows rapid development and data

exploration.

Future Development of the

Distance Machine
The performance of ANN/objectivity can

be improved by tuning of the objectivity

parameters on a case-by-case basis.

Once the database reaches sizes of millions

of objects and above, simply increasing the

client page cache cannot increase the

performance, as the cache is already small

with respect to the total database size. This is

especially true given that usually the NN

search is performed for each object in the

complete dataset. Some improvement can be

obtained by a reclustering of the database,

wisely choosing the factor of growth of the

containers and the number of containers per

database.

There is large performance gain to be had

by a parallelization of the NN search engine.

The data needs to be distributed to each node

partitioned by different portions of the sky.

Some overlapping of the data would be

implemented in order to solve the problem at

the borders (the so-called shadowing

techniques). TAM uses Condor9 as batch

system, which would handle this naturally,

but some problem could occur due to the

already mentioned interference between GFS

and Objectivity.

In order to make the definition of the space

where ANN operates user-friendlier, some

kind of GUI could be implemented. So far the

user is required to C++ code it as a method

 5
that operates on the schema of the persistent

tag object.

References
1 http://cmsdoc.cern.ch/cms/grid
2 http://www.sdss.org
3 http://www.sdss.jhu.edu
4 http://www.sistina.com/gfs
5 http://www.objectivity.com
6 ANN Programming Manual; David M.

Mount, Department of Computer Science and

Institute for Advanced Computer Studies,

University of Maryland,

www.cs.umd.edu/~mount/ANN/
7 Moore, A., et al., Fast Algorithms and

Efficient Statistics: n-point Correlation

Functions, at the MPA/MPE/ESO Conference

"Mining the Sky" 2000,

http://www.cs.cmu.edu/~agray/miningthesky.

pdf
8http://sdss.fnal.gov:8000/~annis/astroCompu

te.html
9 http://www.cs.wisc.edu/condor

